MIURA Technical Report

三浦工業株式会社 三浦環境科学研究所

【既報】報文:環境化学 Vol.15,No.3,pp.585-596,2005

GC-MS 法及び生物検定法によるダイオキシン類測定法のための簡易精 製・濃縮法に関する検討

藤田 寛之¹⁾、濵田典明²⁾、澤田石一之³⁾、本田克久¹⁾

ダイオキシン類自動前処理・測定システム

- 1) 愛媛大学 農学部 環境産業科学研究室 (〒790-8566 愛媛県松山市樽味 3-5-7)
- 2) 三浦工業株式会社 三浦環境科学研究所 (〒799-2430 愛媛県松山市北条辻 864-1)
- 3) 愛媛大学 農学部 環境分析化学研究室 (〒790-8566 愛媛県松山市樽味 3-5-7)

Investigation of the purification / concentration method for dioxins analysis by GC-MS and Bioassay

Hiroyuki Fujita¹⁾, Noriaki Hamada²⁾, Kazuyuki Sawadaishi³⁾, Katsuhisa Honda¹⁾

- 1) Environmental Science for Industry, Ehime University (3-5-7 Tarumi, Matsuyama Ehime, 790-8566)
- 2) Miura Institute of Environmental Science, MIURA Co., Ltd. (864-1, Hojo Tsuji, Matsuyama Ehime, 799-2430)
- Environmental Bioanalytical Chemistry, Ehime University (3-5-7 Tarumi, Matsuyama Ehime, 790-8566)

Summary

Our previous report showed that the heating (60°C) multilayer silica gel columns, *i.e.*, AgNO₃ silica gel and H_2SO_4 silica gel, was useful as purification method for dioxins analysis¹). In this study, further simplified- and automated- preparation method for dioxins analysis using HRGC-HRMS and Bioassay was studied on three successive steps of the purification, concentration and solvent substitution.

The results showed the best suitable condition as follow: An alumina column as concentration and solvent substitution was set under multilayer silica gel column. Dioxins sample in hexane was applied on a top of multilayer silica gel column. After heating the column at 60°C, dioxins were eluted with 60ml of n-Hexane kept at 60°C, and then followed by drying the alumina column with N₂ gas. Thereafter, dioxins in alumina column

were reversibly eluted with 0.5ml of Toluene or DMSO solution kept at 60°C, and determined by GC-MS or Bioassay. This newly developed method for dioxins analysis was considered to be useful for reduction of analytical time, amount of solvent, and cost.

Key words: Dioxins, Automated solvent concentration, Automated solvent substitution, GC-MS, Bioassay

1.はじめに

平成 14 年におけるダイオキシン類の排出総量は、 平成 11 年に施行されたダイオキシン類対策特別措 置法に基づいて行なわれた様々な発生源対策の結 果、平成9年に比べ9割以上の削減率に達した。し かしながら、土壌や底質等については、依然として 特定箇所の高濃度汚染が存在するため、汚染対策 の徹底を図ると共に、ダイオキシン類の測定やモニ タリング、特に簡素化された測定分析法の開発が一 層求められている。しかし、現行の公定法(例えば、 JIS K0311、K0312²⁾)は、分析に多大な時間と費用 がかかるため、平成 16 年 12 月のダイオキシン類対 策特別措置法の改正以来、国レベルでの簡易法の 導入と開発が進められてきた。現在までに生物検定 法やGC-LRMS/MS 等³⁻⁶⁾による迅速かつ低コスト化 を狙った測定分析法が提案され、そのいくつかは市 販されている。しかし、いずれの測定法においても、 前処理を適切に行うことは案外難しく、測定時の妨 害成分の除去が不十分であったり、ダイオキシン類 の濃縮操作が煩雑であるなど、未解決の部分が多く 残されている。

我々は、既報¹⁾において、ダイオキシン類を高精 度かつ迅速に分析測定できる手法の開発を目的とし て、GC-MS 及び生物検定法の両測定に適用でき、 しかも精製効率が高く、簡便な前処理法について検 討し、多層シリカゲルカラムの加熱による精製法が有 効であることを報告した。この精製法は、従来の多層 シリカゲルカラムを 60°C に加熱した状態で試料の精 製処理を行うことにより、イオウや芳香族炭化水素類 の効率的除去が可能である。しかしながら、精製処 理後の濃縮や溶媒の転溶操作が煩雑であること、ま た、多層シリカゲルカラムの加熱による精製だけでは、 試料によりGC-MS測定上の妨害成分が存在する場 合があるなど未検討の部分があった。そこで、本研 究では、GC-MS測定及び生物検定法のための加熱 多層シリカゲルカラム精製から濃縮までの操作が自 動かつ連続的にできるカラム濃縮法について検討し たので報告する。

2. 試薬等及び実験方法

2.1 試薬と試料調製及びダイオキシン類の測定 法

本実験で用いた多層シリカゲルカラムの化学修飾 シリカゲルは,10%(w/w)硝酸銀シリカゲルと 44% (w/w)硫酸シリカゲルであり、JIS 法に準じて作成した。 なお、化学修飾シリカゲルの母剤シリカゲルには、球 状シリカゲル 60(63~200µm、関東化学社製)を用 い、メタノールで洗浄後、130 、12 時間乾燥させ、 さらにダイオキシン類ブランクの低減のために 500 、 3 時間焼成し、使用時まで気密瓶に保存した。

濃縮カラムの充填剤には、アルミナ(ICN:
Alumina B super-I for dioxin analysis, 60-200mesh)、
グラファイトカーボンの Carbopack B と Carbopack C
(SUPELCO 社製)及び活性炭分散シリカゲル(関東
化学社製)の計4 種類を用いて検討を行った。実験
に供した充填剤の物理的特性を Table 1 に示した。

濃縮カラムの評価に用いた標準液及び試料は、 ダイオキシン類標準物質、排ガス抽出試料の2種類

2

を用いた。なお、ダイオキシン類標準物質 (Wellington Laboratories Inc.製)は、ジベンゾパラジ オキシン及びジベンゾフランの4-5 塩素化物、6-7 塩 素化物、8塩素化物(以下、PCDD/DFs)、コプラナー PCB(以下、Co-PCBs)がそれぞれ 1000pg/mℓ、 2000pg/mℓ、5000pg/mℓ、2000pg/mℓとなるようにへキ サンで希釈し調製した。排ガス抽出試料は、焼却炉 からの排出ガス30検体についてJIS法に準じて採取、 抽出したものから一定量分取し、すべてを混合したも のをヘキサン(ヘキサン 300、和光純薬社製)に転溶 したものを用いた(以下、排ガス標準液。あらかじめ 測定したダイオキシン類濃度は、約 1.3ng-TEQ/mℓ であった。)。

ダイオキシン類の測定は、内標準法により行い、 内標準物質として¹³C₁₂でラベル化されたダイオキシ ン類クリーンアップスパイク、シリンジスパイク(それぞ れ Wellington Laboratories Inc.製)を用いた。クリーン アップスパイクは、PCDD/DFs の 2,3,7,8-位塩素置換 体 17 異性体と Co-PCBs の 12 異性体を用いた。シリ ンジスパイクは、¹³C₁₂-1,2,3,4-TeCDF、¹³C₁₂-1,2,3,4,6, 9-HxCDF、¹³C₁₂-1,2,3,4,6,8,9-HpCDFs、¹³C₁₂-2,2',3, 4',5' -HxCB を用いた。

免疫測定には、環境試料においてダイオキシン類 トータル TEQ 値と高い相関が見られる 2,3,4,7,8-PeC DF に対して特異性を有する抗ダイオキシンモノク ローナル抗体(京都電子工業社製)を使用した⁷⁾。

2.2 濃縮カラムにおける吸着剤の選定

2.2.1 多層シリカゲルカラム及び濃縮カラムの 作製とダイオキシン類の溶出条件検討

濃縮カラムにおける吸着剤の選定を行うに当たっ て、Fig.1に示すような実験装置を組み立てた。Fig.1 に示した実験装置の基本的操作手順は、まず多層 シリカゲルカラムの最上部に試料を添加し、恒温槽1 を 60°C に設定し、 ヘキサン 60mℓ (流速 2.5mℓ/min, PU-2080 型インテリジェント HPLC ポンプ,日本分光 社製)を多層シリカゲルカラム最上部から通液させ恒 温槽 2(このとき室温程度:24±2℃)の濃縮カラムに 連続的に通過させ、廃液ボトル(Fig.1-(h))へ排出さ せる。その後、恒温槽2を60℃に保ち、濃縮カラム を窒素により乾燥させる。続いて、恒温槽 2 を 60℃ に保持させた状態で、トルエン(GC-MS 測定用)もし くは DMSO(和光純薬社製)(生物検定法用)を用い てバックフラッシュ法(流速は1.25ml/min)により濃縮 カラムからダイオキシン類を溶出させ、測定液を調製 する。なお、生物検定法においては精製により得ら れた回収液を、細胞や生体分子の働きを阻害しない ジメチルスルホキシド(以下、DMSO)などの溶媒に 置き換えて、測定を行うのが一般的であるが、この操 作を自動化することも本研究の目的としている。

多層シリカゲルカラムは(Fig.1-(c))、空カラム (10φ×150mm,ガラス製 LC 用カラム)に下層からガ ラスウール、無水硫酸ナトリウム、44%(w/w)硫酸シリ カゲル 5.6g、10%硝酸銀シリカゲル 3.5g、無水硫酸

Table 1	Physical	characteristics	of	adsorbents
I abic I	1 II y Sloui	ciluluctoristics	υı	ausorounts

Adsorbent	Dencity (m^3/g)	Mesh	Surface area (m^2/g)
Carbopack B	2.8	120 - 400	100
Carbopack C	1.4	80 - 100	10
Carbon/SiO ₂ (dispersed)	NA	NA	300
Alumina	0.95	60 - 260	130

NA: not analysis

Fig. 1 Diagrams of the experimental equipment for sample preparation of dioxins.

ナトリウム、ガラスウールを充填し Fig.1 における恒温 槽 1(Fig.1-(f-1))に設置した。なお、60°C の場合、多 層シリカゲルカラムから、ダイオキシン類をすべて溶 出させるのにヘキサン 60m[®] が必要であることが既報

濃縮カラムは、空カラム(7.6 × 50mm, ステンレ ス製 LC 用カラム)に、アルミナ 1.2g、Carbopack C 0.5g、Carbopack B 0.5g、活性炭分散シリカゲル 0.5g をそれぞれ充填した濃縮カラムを恒温槽 2 (Fig.1-(f-2))に設置し、以下の実験を行った。

濃縮カラムの充填剤の選定には、まず4種類の吸 着剤についてダイオキシン類の回収率の確認を以 下の方法で行った。多層シリカゲルカラムの最上部 にダイオキシン類標準物質 1ml を添加し、実験装置 の操作手順に従ってトルエンもしくは DMSO のダイ オキシン類測定液を採取し、測定液中のダイオキシ ン類の回収率を求めた。つまり、バックフラッシュ法 によるトルエンもしくは DMSO の通液量が 0~5mlと 6~10mℓの2 画分を採取し、それぞれの画分にク リーンアップスパイクを添加し、トルエンの場合につ いては、2 画分とも 30µℓ まで濃縮後、HRGC-HRMS にて測定し、添加量に対するダイオキシン類標準物 質の回収率を求めた。一方、DMSO の場合は、一度 ヘキサンに転溶させエバポレータ及び窒素気流下 で濃縮後、シリンジスパイクを添加した。さらに 30μℓ まで濃縮し、HRGC-HRMS にて測定し、回収率を求 めた(DMSO 溶液からヘキサン転溶する場合の内標 準物質の回収率は、94~109%であることはあらかじ め確認している。)。

次に、バックフラッシュ法により濃縮カラムからダイ オキシン類をすべて溶出させるために必要な溶媒(ト ルエンもしくは DMSO)量を各吸着剤の分画試験に より求めた。それぞれの画分のダイオキシン類量は、 溶 出 液 を 濃 縮 後、先 述 した 測 定 法 により HRGC-HRMS にて測定を行い、ダイオキシン類がす べて溶出する画分を確認した。

2.2.2 濃縮カラムに用いる各吸着剤の精製効 率の評価

各吸着剤を充填した濃縮カラムの精製効果を調 べるために、排ガス標準液 5ml を多層シリカゲルカ ラムの最上部に添加し、2.2.1 に記述した実験装置 の操作手順で前処理を行った。各吸着剤を充填した 濃縮カラムから回収されたヘキサン通過廃液画分と、 トルエンによるバックフラッシュ法により得られたダイ オキシン類画分(ここでは、2.2.1 で求めた濃縮カラ ムからダイオキシン類を完全に溶出させるのに必要 なトルエン量で溶出した。)について、それぞれをヘ キサンに転溶し、100µl まで濃縮後、HRGC-LRMS にてスキャン測定を行った。

2.3 本前処理法における濃縮カラムの妥当性評価

前項までの実験結果を基に、濃縮カラムの吸着剤 及びダイオキシン類の回収条件を決定し、次いでそ れを基にして濃縮カラムからダイオキシン類を回収 する場合の繰り返し精度及び内標準物質の回収率 の確認を行うため、以下の実験を行った。排ガス標 準液 5mℓを用いて 2.2.1 に記述した実験装置の操 作手順で行い、ここでは、排ガス標準液 5ml にあら かじめクリーンアップスパイクを添加した粗抽出液の 前処理を行った。得られたトルエン溶液は、シリンジ スパイクを添加し、30µℓまで濃縮した後、 HRGC-HRMS で測定した。一方、DMSO 溶液につ いては、一度ヘキサン転溶させエバポレータにより 濃縮後、活性炭カラムを用いて PCDD/DFs と non-orhto-PCBs 画分及び mono-ortho-PCBs 画分に 分画後、それぞれの画分にシリンジスパイクを添加し、 30μℓ まで濃縮した後、HRGC-HRMS で測定した。

さらに、本濃縮法が生物検定法に適用できるかに

ついて評価するため、排ガス標準液を用いて前項の 要領に従って前処理し、DMSO 測定液を調製した。 測定には、バイオセンサ(DXS-600: 平衡除外免疫 測定法に基づく自動フロー式免疫蛍光測定計⁸⁾、京 都電子工業株式会社製)を用いた。検量線は、 2,3,4,7,8-PeCDF 標準品を DMSO にて希釈したもの を測定し、2,3,4,7,8-PeCDF 濃度に対して自動的に 算出されるセンサ測定値をプロットして作成した。ま

Table 2 Measurement and SCAN mode conditions of sample solutions by HRGC-HRMS and HRGC-LRMS.

HRGC Conditions					
SCAN					
Column	DB-5MS (60m × 0.25	mm I.D., 0.25µm Film)			
Oven Temp.	70°C, 2min - 5°C/min 290°C, 14min				
Carrier Gas	He: 233kPa (35cm/s, 1	1.5m /min), Constant flow			
Inlet Temp.	250°C				
Injection Mode	Splitless (1min)				
TeCDDs, TeCDFs, PeCD	Ds, PeCDFs, HxCDDs	s, HxCDFs			
Column	SP-2331 (60m × 0.25r	nm I.D., 0.20µm Film)			
Oven Temp.	150°C, 1.5min - 20°C	C/min 200°C - 2°C/min	n 260°C, 26min		
Carrier Gas	He: 233kPa (35cm/s, 1	1.5m /min), Constant flow			
Inlet Temp.	280°C				
Injection Mode	Splitless (1min)				
Co-PCBs, 1,2,3,7,8,9-Hex	ka-PCDF, HpCDDs, H	IpCDFs, OCDD, OCDF			
Column	RH-12MS (60m × 0.2	5mm I.D., 0.20µm Film)			
Oven Temp.	150°C, 1min - 15°C/	min 210°C - 3°C/min	300°C, 20min		
Carrier Gas	He: 233kPa (35cm/s, 1	1.5m /min), Constant flow			
Inlet Temp.	270°C				
Injection Mode	Splitless (1min)				
MS Conditions					
LRMS (JMS-K9)					
Ionization Current	450μΑ				
Ionization energy	70eV				
Source Temp.	250°C	Moni	tor Ions		
HRMS (JMS-700S and J	MS-700D)	Native	Labeled		
Ionization Current	500μΑ	319.8965, 321.8937	331.9368, 333.9339		
Ionization Voltage	38V	355.8547, 353.8576	367.8949, 365.8978		
Source Temp.	270°C	389.8157, 391.8128	401.8559, 403.8530		
Accel. Voltage	10kV	423.7767, 4257738	435.8169, 437.8140		
Resolution	>10000	457.7377, 459.7348	469.7779, 471.7750		
		303.9016, 305.8987	315.9419, 317.9389		
		339.8597, 341.8568	351.9000, 353.8970		
		373.8208, 375.8179	385.8610, 387.8581		
		407.7818, 409.7789	419.8220, 421.8191		
	441.7428, 443.7399 453.7830, 455.7801				
		289.9224, 291.9194	301.9626, 303.9597		
		325.8804, 327.8775	337.9207, 339.9178		
		359.8415, 361.8385	371.8817, 373.8788		
		393.8025, 395.7995	405.8428, 407.8398		

た、本測定時の定量下限値は、2,3,4,7,8-PeCDF 濃 度として 0.08ng/ml であった。

本濃縮法の評価方法は、上記のバイオセンサに て希釈試験(Parallelism test)及び添加回収試験 (Recovery of added standard)を行った。希釈試験に おいては、本前処理法により調製された DMSO 測定 液を分取し、4 段階の希釈溶液を調製した後、バイ オセンサにより測定し、希釈濃度対センサ測定値の 直線性の確認を行った。添加回収試験は、まず本前 処理法により調製された DMSO 測定液を分取した DMSO 液を 2 種類用意し、2,3,4,7,8-PeCDF 標準液 を、ひとつは絶対量 0.4ng、もうひとつは 1.6ng となる ように添加し、センサ測定液を調製した。その後、バ イオセンサにより測定を行い、自動的に算出されるセ ンサ測定結果からそれぞれ 2 つのセンサ測定液中 の 2,3,4,7,8-PeCDF 量を求めた。そして、あらかじめ 添加した 2,3,4,7,8-PeCDF 添加量の差である 1.2ng (=1.6 - 0.4ng)を 100 とした場合の 2 つのセンサ測 定液の定量値の差の割合を回収率とした。

2.4 測定に用いた分析機器等

GC-MS SCAN 測定(質量測定範囲は 40~ 600m/z)は HRGC-LRMS(GC 部: Agilent HP6890 series、MS 部:日本電子製 JMS-K9) で行った。 GC-MS SCAN 測定用キャピラリーカラムは, DB-5MS(J&W 社製; 60m×0.25mm I. D., 0.25µm Film)を用いた。ダイオキシン類の測定は、 HRGC-HRMS(MS 部:日本電子製 JMS-700S 及び JMS-700D)によりパーフルオロケロセンを用いたロッ クマス方式による SIM 法で行った。キャピラリーカラ ムは、4 塩素化物から6 塩素化物の PCDD/DFs には SP-2331(Supelco 社製; 60m × 0.25 I. D., 0.25µm Film)を、また7塩化物から8塩化物の PCDD/DFs と Co-PCBs には RH-12MS(INVENTX; 60m × 0.25mm I. D., 0.2µm Film)をそれぞれ使用した。また、 GC-MS 測定条件の詳細を Table 2 に示す。

3.結果と考察

3.1 濃縮カラムにおける吸着剤の選定

3.1.1 濃縮カラムからのダイオキシン類の回収 率と溶出特性

ここでは、GC-MS 用及び生物検定法用のための 前処理における濃縮カラムに適した吸着剤を選定す るため、ダイオキシン類の回収率及び濃縮効果につ いて検討を行った。Table 3 はダイオキシン類標準物 質を用いた各吸着剤からのダイオキシン類の回収率 を示した。60℃ トルエン 0~5mℓ 画分については 4 種類の吸着剤のいずれにおいても PCDD/DFs 及び non-ortho-PCBs の回収率はほぼ 80%以上の良好な 結果が得られた。一方、60℃ DMSO 0-5mℓ 画分で は3種類の炭素系吸着剤におけるダイオキシン類の 回収率は低かったが、アルミナについてはトルエン 溶出の場合と同様にダイオキシン類の回収率は 78 ~106%であった。これは、ダイオキシン類と炭素系 吸着剤との間の - 相互作用⁹⁾と、加えて PCDD/DFs 及び non-ortho-PCBs の構造が平板構造 を有し、かつ疎水性であることが、ダイオキシン類と 炭素系吸着剤の吸着を強くしているため、強い極性

 Table 3
 Recoveries of native dioxins in eluate from the concentration columns.

	Recoveries (%) with Toluene 0-5m at 60°C			Recoveries	Recoveries (%) with DMSO 0-5m at 60°C		
Adsorbent [g]	Mono-ortho-PCBs	Non-ortho-PCBs	PCDD/DFs	Mono-ortho-PCBs	Non-ortho-PCBs	PCDD/DFs	
Carbopack B (0.5g)	2 - 13	84 - 99	85 - 100			6 - 53	
Carbopack C (0.5g)	0 - 1	95 - 102	89 - 97	0 - 0.8	15 - 33	1 - 10	
Carbon/SiO ₂ (0.5g)	24 - 78	88 - 95	78 - 98	31 - 80	43 - 86	2 - 41	
Alumina (1.2g)	56 - 67	84 - 94	87 - 102	28 - 76	78 - 100	86 - 106	

-: No data.

を有するDMSOでは炭素系吸着剤からダイオキシン 類を回収しにくいと考えられる。それに対して、アルミ ナはDMSOとの親和性が強く、また、DMSOは比較 的ダイオキシン類を溶解しやすい溶媒であることから、 アルミナに吸着しているダイオキシン類を容易に脱 着させることができたと考えられる。さらに、吸着した ダイオキシン類をトルエンで溶出した場合、いずれの 吸着剤についても mono-ortho-PCBs の回収率が低 かったことは、一連の多層シリカゲルカラム - 濃縮力 ラムの処理中において mono-ortho-PCBs の一部が 濃縮カラムからへキサンにより溶出していたためと思 われる。

次に、Fig.2に60[®]Cトルエンのバックフラッシュ法に よる各吸着剤(Carbopack B、活性炭分散シリカゲル 及びアルミナ)からのダイオキシン類の溶出パターン を示した。ここでは、Carbopack B と Carbopack C とほ とんど同じパターンを示したため、Fig. 2 では Carbopack B のみ示した。また、先述した Table 3 の 回収率の結果から、炭素系吸着剤からのダイオキシ ン類の DMSO による完全溶出は困難であったため、 以後の DMSO による分画試験はアルミナについて のみ行った。Fig. 2 から分かるようにダイオキシン類 を完全に溶出させるために必要なトルエン量は、 Carbopack BとCarbopack C がそれぞれ 10mℓ、活性 炭分散シリカゲルが 30mℓ、アルミナが 0.5mℓ であっ た。炭素系吸着剤はアルミナと比較して、ダイオキシ ン類溶出のためのトルエン量が 10~50 倍必要であり、 結果として濃縮倍率は悪くなった。アルミナは、トル エン及び DMSO のいずれにおいても 0.5mℓ でダイ オキシン類を完全に溶出させることが可能であった。

アルミナ、活性炭分散シリカゲル、Carbopack C の PCDD/DFs 及び non-ortho-PCBs の DMSO 溶出によ る異性体組成を示す Fig. 3 から、2 種の炭素系吸着 剤は、アルミナと比較して特異的な溶出をしているこ とが伺える。つまり、炭素系吸着剤は、2,3,7,8 位塩素 置換体 PCDD/DFs の中で 2,3,7,8-TCDF、2,3,4,7,8-PeCDF、2,3,4,6,7,8-HxCDF の 3 つの異性体がアルミ ナに比べて溶出しやすい傾向が認められた。これは、 1 位又は 9 位が塩素置換していない 2,3,7,8 塩素置 換 PCDD/DFs 異性体は、炭素系吸着剤においてダ

Fig. 2 Elution patterns of PCDD/DFs from each adsorbent packed in the concentration column with 60°C toluene.

イオキシンよりもジベンゾフランの方が溶出しやすく、 また DMSO 溶媒との親和性が塩素の置換位置の違 いによって異なるためと推定される。

一般に、活性炭分散シリカゲル及びグラファイト カーボンは、ダイオキシン類の吸着性能が比較的室 内環境(湿度など)によって影響されることが比較的 少なく、分離性能及び保持能力に優れている。本実 験の結果から炭素系吸着剤の比表面積の増加と共 にダイオキシン類の保持力が増加することがトルエン 溶出の結果からも明らかであった。このことは、短時 間かつ少量の溶媒で濃縮カラムからダイオキシン類 を脱着させる場合の妨げとなり、最終測定液の濃縮 倍率を悪くし、結果的に測定感度を低下させる要因 となる。また、ダイオキシン類の溶出挙動に異性体に よる差異が存在することは、特に生物検定法の特異 的反応を利用した測定系では測定値に強く影響す ると思われる。しかし、炭素系吸着剤には PCDD/DFs、 non-ortho-PCBs と mono-ortho-PCBs の分離に優れ ているという特徴を持つことから、mono-ortho-PCBs

を破過させない程度の充填量を確保する、もしくは 2 種の吸着剤を組み合わせて使用することによって Co-PCBs の寄与率の高い環境試料の精製法として 利用が可能かもしれない。一方、アルミナは、比較的 大きい比表面積を有するが、溶出液中の異性体組 成に大きな差異はなく、濃縮カラムとして優れた吸脱 着性能を持つ充填剤といえ、溶出のための溶媒量 の削減も可能である。しかし、アルミナは、室内環境 (特に、湿度など)により、吸着性能に差異が現れる ことがあるため、安定性を維持するための管理が必 要である。

3.1.2 各吸着剤による精製効果

吸着剤の選定項目の 1 つとして濃縮カラムによる 精製効果を検討した。Fig. 4 は排ガス標準液を用い て実験装置にて前処理を行った場合の各種吸着剤 における精製効果をトータルイオンクロマトグラムで 示したものである。Fig. 4 の(a)は、多層シリカゲルカ ラム精製だけを行った時のヘキサン精製液のクロマ

Fig. 3 Elution pattern of dioxins from alumina and carbon adsorbents with 10ml DMSO.

トグラムを、また、Fig. 4 の(b)~(e)は各吸着剤からの ダイオキシン類画分と各吸着剤のヘキサンの通過廃 液のクロマトグラムをそれぞれ示している。(b)~(e)の 吸着剤からの通過廃液において、マススペクトル解 析したところ、一定の保持時間間隔で見られるピーク は、直鎖状の飽和炭化水素化合物であったことから、 これら化合物はGC-MS測定においてロックマスへの 影響やイオン化室への負荷が大きくなると考えられ る。また、生物検定法においては高分子の飽和炭化 水素化合物ほど測定を妨害する可能性が高いことか ら、EPA Method においては、これらの化合物の除去 を行う必要があるとしている^{6,10-12)}。アルミナ、活性 炭分散シリカゲル及び Carbopack C においては、こ れらの化合物がダイオキシン類画分からほぼ完全に 除去できていた。一方、Carbopack B については、 n-C₃₀以上の炭素鎖をもつ飽和炭化水素化合物の除 去が不十分であった。

以上の結果から、比表面積が大きいグラファイト カーボンは、高分子の飽和炭化水素化合物と平板 構造をもつ化合物を選択的に保持しやすいため、 PCDD/DFs と non-ortho-PCBs を含む画分に高分子 の飽和炭化水素化合物が含まれることになり、測定 系に及ぼす影響が大きいことが分かった。また、本 実験に用いた数種の吸着剤の中で、ダイオキシン類

Fig. 4 GC-LRMS total ion chromatograms(*m/z: 40-600*) of flue gas sample. (a) in figure shows the chromatogram of eluate from multilayer silica gel column before treatment of concentration column.
(b)-(e) in figure shows the chromatograms of dioxins fraction (upper) and waste fluids (bottom) from each adsorbents.

画分の精製度が高いのはアルミナ、活性炭分散シリ カゲル及び Carbopack C であり、クロマトグラムの ベースラインが最も安定しているのはアルミナである ことが分かった。

3.1.3 簡易前処理の最適条件とその方法

3.1.1と3.1.2の結果から、濃縮カラムに適切な 充填剤としては、回収率、濃縮率及び精製効率の面 から考慮してアルミナを使用することとした(以下、ア ルミナ濃縮カラム)。簡易測定法のための前処理条 件をFig.5に、GC-MS用(Fig.5-(a))と生物検定法用 (Fig.5-(b))に分けてフロー図に示した。前処理の手 順としては、2.2.1 と同様である。多層シリカゲルカ ラムにて精製を行い、続いてアルミナ濃縮カラムに連 続的に通過させる。その後、生物検定法で妨害とな るへキサンの残留を完全に無くすために、アルミナ 濃縮カラムを 60°C に保ち、窒素により乾燥する。続 いて 60°C に保持した状態で、トルエン 0.5mℓ (GC-MS 測定用)もしくは DMSO 0.5mℓ (生物検 定法用)を用いてバックフラッシュ法によりダイオキシ ン類を溶出させる。また、ここでアルミナ濃縮カラムを 加熱することは、乾燥時間の短縮になる。

3.2 GC-MS 及び生物検定法における本濃縮法 の妥当性評価

3.1 の条件で排ガス標準液を前処理した場合の 内標準物質の回収率を Table 4 に示した。試験は 3 回繰り返し、その平均値と変動係数(%)を算出した。 トルエン回収の場合、内標準物質の回収率は、 PCDD/DFs 85~103%、 non-ortho-PCBs 98~105% で、変動係数は 13%未満と安定した結果であった。 また、添加したダイオキシン類濃度 1.34ng-TEQ/ml であるのに対して本前処理法により得られた値は、 平均 1.30ng-TEQ/ml であり、公定法による TEQ 値と してよく一致する結果であった。これは、排ガス試料 は一般に PCDD/DFs と non-ortho-PCBs(#126)が TEQ 値に大きく寄与しているため¹³⁾、 mono-ortho-PCBs の回収率変動の影響をほとんど受けなかった

Fig. 5 Flow charts of developed method. (a): for GC-MS, (b): for Bioassay.

と考えられる。DMSO 回収の場合、内標準物質の回 収率は、PCDD/DFs 82~101%、non-ortho-PCBs 71 ~73%、変動係数は6%未満で、トルエン回収と比較 して non-ortho-PCBs が若干低い回収率を示した。こ れは DMSO がトルエンに比べ極性が高く、ダイオキ シン類に対する親和性が低いためと思われるが、未 回収の部分は比較的少なく、その変動も小さいこと からダイオキシン類の簡易測定法としては問題ない と考えられる。以上の結果から、本濃縮法は安定し たダイオキシン類の最終測定液を調製することがで きるといえる。

最後に、本濃縮法の生物検定法への適用可能性

について、調製した試料溶液の希釈試験及び添加 回収試験をフロー式免疫測定計にて行い、免疫測 定系への影響について検討した。なお、あらかじめ 本法により調製されたプランク測定液は、添加回収 試験を行った結果、使用した試薬のDMSOと同等な 回収率を示したことから、ここで用いた免疫測定系に 影響を与えないことを確認した。

排ガス標準液を用いて本処理法によって得られた 3 種類の DMSO 液の測定を行った。ここで 3 種類の DMSO 測定液とは、多層シリカゲルカラム精製のみ を行ったヘキサン溶液を濃縮乾固させ DMSO 1m に溶解させたもの(以下、多層カラム液)、アルミナ濃

Table 4 Recoveries and repeatability of ${}^{13}C_{12}$ -labeled PCDD/DFs and Co-PCBs isomers for flue gas stock solution.

		Toluene (<i>n</i> =3)		DMSO (<i>n</i> =3)	
Isomer		Average of recoveries (%)	RSD (%)	Average of recoveries (%)	RSD (%)
1,3,6,8-TeCDD		101	3	83	3
2,3,7,8-TeCDD		97	11	92	2
1,2,3,7,8-PeCDD		93	6	95	6
1,2,3,4,7,8-HxCDD		101	6	94	2
1,2,3,6,7,8-HxCDD		92	6	96	3
1,2,3,7,8,9-HxCDD		94	9	92	4
1,2,3,4,6,7,8-HpCDD		93	1	88	5
OCDD		99	4	84	4
2,3,7,8-TeCDF		91	8	91	2
1,2,3,7,8-PeCDF		103	6	92	1
2,3,4,7,8-PeCDF		95	8	91	1
1,2,3,4,7,8-HxCDF		92	3	93	2
1,2,3,6,7,8-HxCDF		90	7	85	4
1,2,3,7,8,9-HxCDF		90	13	101	3
2,3,4,6,7,8-HxCDF		85	7	89	4
1,2,3,4,6,7,8-HpCDF		93	5	82	3
1,2,3,4,7,8,9-HpCDF		96	6	86	4
OCDF		98	3	82	3
3,4,4',5-TeCB	#81	98	5	72	8
3,3',4,4'-TeCB	#77	105	4	73	5
3,3',4,4',5-PeCB	#126	103	7	71	6
3,3',4,4',5,5'-HxCB	#169	101	2	72	7

縮カラムのヘキサン通過廃液を濃縮乾固させ DMSO 1ml に溶解させたもの(以下、通過廃液)、及 びアルミナ濃縮カラムからバックフラッシュにより DMSO で溶出させた測定液(以下、ダイオキシン測 定液)である。Fig. 6 は、多層カラム液とダイオキシン 測定液それぞれの希釈試験の結果である。多層カラ ム液の場合は、高濃度域になるに従い横ばいになり、 濃度依存的な直線性が得られないことから、この測 定液中には免疫測定系に影響を及ぼす成分が多く 含まれていることが示唆された。

さらに、Table 5 は、通過廃液を用いた添加回収試 験結果である。測定液に 2,3,4,7,8-PeCDF 絶対量 0.4ngと1.6ngを添加した場合、測定液の定量値の差 は、DMSO 測定液 100µℓ 分取の場合では 0.91ng (=1.28 - 0.36ng)、150µℓ 分取の場合では 0.74ng (=1.11 - 0.38ng)であった。よって、それぞれの回収 率は 76%(= 0.91÷1.2×100 : ここで 1.2 は、 2,3,4,7,8-PeCDF 添加量 0.4ng と 1.6ng の差)、61% (=0.74÷1.2×100)となる。試料の分取量が 100 から 150µℓ と増加すると、回収率が低下することから、ア ルミナ濃縮カラムの通過廃液中に免疫測定系に影 響を及ぼす成分が含まれていることが判明した。この 成分は、多層シリカゲルカラムのみの測定液(多層カ ラム液)にも含まれていることは明らかであり、アルミ ナ濃縮カラムによって影響成分は除去されたため、 Fig. 6 で示すようにダイオキシン測定液は濃度依存

TEQ concentration measured with GC-MS [ng/m]

Fig. 6 Results of parallelism test from prepared samples, the eluate from multilayer silica gel column () and DMSO solution from alumina concentration column (), in flue gas stock solution. Plotting of the assay values against sample dilutions should be straight with zero intercepts.

的な直線性が得られるようになったと考えられる。

以上のことから、一連の加熱多層シリカゲルカラム - アルミナ濃縮カラムによる試料の精製 - 濃縮法は、 GC-MS 及び生物検定法に適用可能であり、ダイオ キシン類の測定精度の高い、しかも簡易かつ迅速な 試料の前処理法として広く利用が期待できる。

要約

本研究は,ダイオキシン類を迅速かつ簡易に分 析測定できる手法を開発するため、特徴的な精製カ ラムと濃縮カラムの2つのカラムからなる前処理法を 考案した。今回は、既報で報告した加熱多層シリカ ゲルカラム精製法を行った後の煩雑な濃縮操作及 び溶媒転溶を自動化するための濃縮カラムの充填 剤について検討を行った。その結果、以下のことが 明らかとなった。

アルミナ、活性炭、グラファイトカーボンの3種類 の吸着剤はいずれもPCDD/DFs、non-ortho-PCBsを定量的にカラム濃縮が可能であった。 活性炭、グラファイトカーボンはDMSOによる脱 着速度が遅かったが、アルミナではトルエン及 びDMSOによるダイオキシン類の脱着が容易で あった。

アルミナは、活性炭及びグラファイトカーボンに 比べ、高分子の炭化水素化合物の除去効果が 高かった。

GC-MS 法用及び生物検定法用として、濃縮カ ラムにアルミナを用いることで、PCDD/DFs、 *non-ortho*-PCBs は高い回収率と精度が得られ、 また、生物検定法に適用させる場合には、濃縮 と同時に精製効果も期待できる。

アルミナは、測定液の高濃縮と精製効果があるこ とからオンカラム濃縮法に適した吸着剤であり、加熱 多層シリカゲルカラム精製法とアルミナ濃縮カラム法 を組み合わせることにより、GC-MS 及び生物検定法 用のための迅速かつ簡便な前処理が行えるといえる。 現在までに全自動で最終濃縮/測定液まで調製でき る前処理装置は開発されておらず、本研究において 開発した処理方法を装置化することによりダイオキシ ン類測定の処理コスト及び人為的誤差の低減も期待 できる。

参考文献

1) 藤田寛之, 濵田典明, 本田克久: 「ダイオキシン

Table 5	Recoveries of analyte (2,3,4,7,8-PeCDF) from	different volumes	(100 and	150μℓ) o	f sample	spiked
	with two analyte concentrations					

	Sample volume [µ]		
	100	150	
Analyte added [ng]	Quantity m	easured [ng]	
0.40	0.36 ± 0.02	0.38 ± 0.04	
1.60	1.28 ± 0.01	1.11 ± 0.06	
The amount of increase [ng] ^(a)	0.91	0.74	
Recovery ^(b)	76%	61%	

(a): The difference in quantity measured between the solution of analyte added 1.6ng and analyte added 0.4ng.

(b): Percentage recovery calculates for each sample as follows: Recovery (%)=The amount of increase [ng] / quantity expected (1.2ng) × 100

類分析における加熱多層シリカゲル精製法の検討」,環境化学,15,117-128,(2005)

- 日本工業標準調査会:「JIS K 0311, 排ガス中ダ イオキシン類及びコプラナーPCB の測定方法」, 日本規格協会,東京(1999)
- Richter, B.E., Ezzell, J.L., Knowles, D.E., Hoefler, F., Mattulat, A.K.R., Scheutwinkel, M., Waddell, D.S., Gobran, T. and Khurana, V.: Extraction of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from environmental samples using accelerated solvent extraction (ASE). *Chemosphere*, **34**, 975-987 (1997)
- 4) 前岡理照,井上到,下野寿夫,森田展正:「JIS 規格に基づくダイオキシン分析のおける省力化 の検討」,第 10 回 環境化学討論会講演要旨 集,149-150,(2001)
- Clement, R. E., Bobbie, B. and Taguchi, V.: Comparison of instrumental methods for chlorinated dibenzo-p-dioxin (CDD) determination - interim results of a round-robin study involving GC-MS, MS-MS, and high resolution MS. *Chemosphere*, **15**, 1147-1156, (1986)
- Harrison, R.O. and Eduljee, G.H.: Immunochemical analysis for dioxins — progress and prospects. *The Science of The Total Environment*, 239, 1-18, (1999)
- 7) 高木陽子、澤田石一之、片岡千和、「環境中の ダイオキシン類の測定に適した抗ダイオキシン モノクローナル抗体およびそれを産生するハイ プリドーマ」特許出願番号:P2004-003234(日)

MIURA

本国)

- Glass, R. T., Saiki, H., Joh, T., Taemi, Y., Ohmura. N. and Lackie J. S.: Evaluation of a compact bench top immunoassay analyzer for automatic and near continuous monitoring of a sample for environmental contaminants. *Biosensors and Bioelectronics*, 20, 397-403, (2004)
- 9) Hankemeier, T., Leeuwen, S. P. J., Vreuls, R. J. J. and Brinkman, U. A. T.: Use of a presolvent to include volatile organic analytes in the application range of on-line solid-phase extraction–gas chromatography–mass spectrometry. *Journal of Chromatography A*, **811**, 117-133, (1998)
- Aries, E., Anderson, D. R., Ordsmith, N., Hall, K. and Fisher, R.: Development and validation of a method for analysis of "dioxin-like" PCBs in environmental samples from the steel industry. *Chemosphere*, 54, 23-31, (2004)
- U. S. Environmental Protection Agency: "Method 4025, Screening for Polychlorinated Dibenzodioxins and Polychlorinated Dibenzofurans (PCDD/Fs) by immunoassay." (2002)
- 12) U. S. Environmental Protection Agency: "Method 4425, Screening extracts of environmental samples for planar organic compounds (PAHs, PCBs, PCDDs/PCDFs) by a reporter gene on human cell line." (2000)
- 13) 柴山基,林篤宏,井上毅,高菅卓三:「指標 異性体を用いたダイオキシン類の迅速測定
 法」,環境化学,13,17-29,(2003)

グリーンテクノロジーを創成する 三浦環境科学研究所 ^{愛媛県松山市北条辻864番地1 〒799-2430} TEL 089-960-2350 FAX 089-960-2351 三浦工業株式会社 http://www.miuraz.co.jp